Abstract

Filamentation, as a universal femtosecond phenomenon that could occur in various nonlinear systems, has aroused extensive interest, owing to its underlying physics, complexity and applicability. It is always anticipated to realize the controllable and designable filamentation. For this aim, the crucial problem is how to actively break the symmetry of light-matter nonlinear interaction. A kind of extensively used approaches is based on the controllable spatial structure of optical fields involving phase, amplitude and polarization. Here we present an idea to control the optical field collapse by introducing optical anisotropy of matter as an additional degree of freedom, associated with polarization structure. Our theoretical prediction and experimental results reveal that the synergy of optical anisotropy and polarization structure is indeed a very effective means for controlling the optical field collapse, which has the robust feature against random noise.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call