Abstract

Crater shapes and plasma plume expansion in the interaction of sharply focused laser beams (10 μm waist diameter, 60 fs–6 ns pulse duration) with metals in air at atmospheric pressure were studied. Laser ablation efficiencies and rates of plasma expansion were determined. The best ablation efficiency was observed with femtosecond laser pulses. It was found that for nanosecond pulses, the laser beam absorption, its scattering, and its reflection in plasma were the limiting factors for efficient laser ablation and precise material sampling with sharply focused laser beams. The experimental results obtained were analyzed with relation to different theoretical models of laser ablation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.