Abstract

We have obtained resonance Raman spectra of nitroethane and 1-nitropropane in the gas phase and in cyclohexane solution with excitation within the broad B-band absorption around 200 nm. The resonance Raman spectra are dominated by a long overtone progression in the nominal NO2 symmetric stretch vibrational mode. The initial short-time (femtosecond) photodissociation dynamics of the excitedelectronic state associated with the B-band absorption changes mainly in the two N–O bond lengths in the Franck–Condon region. Time-dependent wavepacket calculations have been carried out to simulate both the absorption spectra and the resonance Raman intensities. These calculations show that very fast predissociation competes with wavepacket motion out of the Franck–Condon region, and or there is a significant change in the transition dipole moment along the nominal NO2 symmetric stretch coordinate, that must be taken into account to correctly model the higher overtone resonance Raman intensities. Since the resonance Raman intensity patterns and calculation parameters are very similar for both gas and solution phase nitroethane and 1-nitropropane, electronic dephasing due tosolvent collisions does notappear tobe a significantfactor in determining the resonance Raman overtone intensities up to v = 9.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.