Abstract

Studies are reported of the dynamics of proton-transfer reactions, with sub-picosecond time resolution, in solvent cages. The acid—base system studied in a molecular beam is 1-naphthol as a solute and ammonia (or water) as a solvent, with the number of solvent molecules (n) varying. At the threshold (n=3) for proton transfer we examine the accurate form of the decay, which has an apparent biexponential character, and we relate it to the nature of deprotonation and recombination. From studies of the effect of the total energy, isotope substitution and solvent number (n), we discuss the nature of the transfer and the interplay between the local structure of the base solvent and the dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.