Abstract

The Optical Kerr Effect is investigated for the first time in biological tissues. This nonlinear effect was explored in both human brain and avian breast tissues using a time-resolved femtosecond pump-probe Optical Kerr Gate that looks for phase changes that arise in the probe from the pump induced Kerr refractive index change. The tissue samples produced a unique ultrafast (700-800 fs) doubled peaked temporal signal, which is indicative of interplay between the different ultrafast mechanisms (electronic plasma and molecular) that make up the Kerr index. The unique profile was replicated in theoretical simulations. The properties of the temporal profile varied between samples suggesting that it could be used as a new diagnostic. Understanding this behavior can help improve the scientific understanding of nonlinear spectral diagnostic techniques and potentially create a new Kerr-based optical biopsy method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call