Abstract

Oxidation-state-specific dynamics at the Fe M2,3-edge are measured on the sub-100 fs time scale using tabletop high-harmonic extreme ultraviolet spectroscopy. Transient absorption spectroscopy of α-Fe2O3 thin films after 400 nm excitation reveals distinct changes in the shape and position of the 3p → valence absorption peak at ∼57 eV due to a ligand-to-metal charge transfer from O to Fe. Semiempirical ligand field multiplet calculations of the spectra of the initial Fe3+ and photoinduced Fe2+ state confirm this assignment and exclude the alternative d–d excitation. The Fe2+ state decays to a long-lived trap state in 240 fs. This work establishes the ability of time-resolved extreme ultraviolet spectroscopy to measure ultrafast charge-transfer processes in condensed-phase systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call