Abstract

We present an experimental setup for generation of entangled-photon pairs via spontaneous parametric down-conversion, based on the femtosecond-pulsed laser. Our entangled-photon source utilizes a 76-MHz-repetition-rate, 100-fs-pulsewidth, mode-locked, ultrafast femtosecond laser, which can produce, on average, more photon pairs than a cw laser of an equal pump power. The output infrared pump photons (λ = 810 nm) are first up-converted to blue light (λ = 405 nm) and, subsequently, down-converted in a 1.5-mm-thick, type-II BBO crystal via spontaneous down-conversion. The resulting entangled pairs are counted by a pair of high-quantum-efficiency, single-photon, silicon avalanche photodiodes. The total down-conversion efficiency of our system, corresponding criterion of the pump power for real entangled coincident events, has been calculated to be 0.86 × 10-9. Our apparatus is intended as an efficient source/receiver system for the quantum communications and quantum cryptography applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.