Abstract

The presentation will overview our on-going activities on laser ablative synthesis of plasmonic colloidal nanomaterials and their biomedical applications. Our approach is based on ultra-short (fs) laser ablation from a solid target or already formed water-suspended colloids, which makes possible the fabrication of ultrapure bare (ligand-free) nanoparticles having controlled mean size and low size dispersion. The presentation will describe different approaches to achieve appropriate characteristics of nanomaterials (Au-based nanomaterials and alternative structures) and overview their biomedical applications. In particular, we show that Au nanoparticles can efficiently enhance Raman signals from different biological objects. Profiting from the observed enhancement and purity of laser-synthesized nanomaterials, we demonstrate successful identification of 2 types of bacteria (Listeria innocua and Escherichia coli). We also show that bare metal nanoparticles synthesized by laser ablation can provide an order of magnitude better response in glucose oxidation tasks, which promises their use as elecrocatalysts in bioimplantable therapeutic devices. Finally, we overview applications of bare plasmonic nanomaterials in phototherapy and tissue engineering tasks

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.