Abstract

We report on the design and fabrication of straight and S-curved waveguides in neodymium-doped yttrium aluminate (Nd:YAP) crystal by using direct femtosecond laser writing. These S-curved channel waveguides are based on the hexagonal optical-lattice-like and depressed cladding geometry. For each type waveguide, S-curves with three lateral offsets of 50 μm, 100 μm, and 150 μm are implemented. These waveguides are with good guiding properties and low bending losses. With S-curved waveguide as laser cavity, dual-wavelength, 31.6 GHz waveguide laser operating at 1064 nm and 1079 nm have been demonstrated based on MoS2 as a saturable absorber. This work paves the way to develop new on-chip ultrafast laser sources based on femtosecond laser inscribed S-curved waveguides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call