Abstract

The waveguide beam splitters with diverse configurations in LiNbO3 crystal have been produced by direct femtosecond laser writing of a family of optical-lattice-like cladding structures. By on demand design of the lattice tracks with “defect” lines, the efficient beam guiding and tailoring have been implemented in the structures. With a family of three-element integration of structures, three-dimensional (3-D) $1 \times 3$ beam splitting at the telecommunication wavelength of 1550 nm was realized. Different from the Type I modification of LiNbO3 waveguides, the guiding cores of the optical-lattice-like cladding waveguide structures we fabricated locate in regions that are surrounded by the laser-induced-tracks. This paper opens the alternative way to construct complex integrated platforms in LiNbO3 crystal by using femtosecond laser writing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.