Abstract

We report the first study of laser-tissue interaction in the femtosecond time regime. Retinal damage thresholds and mechanisms produced by exposure to high-intensity femtosecond laser pulses were investigated in chinchilla grey rabbits. Exposures were performed using single laser pulses of 80 fs duration at 625 nm. ED <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">50</inf> injury thresholds of 0.75 and 4.5 μJ were measured using fluorescein angiographic and ophthalmoscopic visibility criteria evaluating 204 laser exposures. Ultrastructural studies including light and electron microscopy were performed on selected lesions. Results suggest that the primary energy deposition in the retina occurs in melanin, However, in contrast to laser injuries produced by longer pulses, exposures of more than 100 × threshold in the <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">50-100 \mu</tex> J range did not produce significantly more severe lesions or hemorrhage. This suggests the presence of a nonlinear damage limiting mechanics in tissue exposed to femtosecond laser pulses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.