Abstract

Abstract Bioresorbable nanofiber nonwovens with their fascinating properties provide a wide range of potential biomedical applications. Modification of the material enables the adjustment of mechanical and biological characteristics depending on the desired application. Due to the nanosized fiber network, post-production structuring is very challenging. Within this study, we use femtosecond laser technology for structuring permeable and resorbable electrospun poly-L-lactide (PLLA) membranes. We show that this post-production process can be used without disturbing the fiber network near the structured areas. Furthermore, the modification of the water permeability and mechanical characteristics due to the laser structuring was investigated. The results prove femtosecond laser technology to be a promising method for the adjustment of the membrane properties and which in consequence can help to optimize cell adhesion, enable revascularization and open up applications of nanofiber membranes in personalized medicine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.