Abstract
The fabrication of a large number of high-resolution thin-shell mirrors for future space telescopes remains challenging, especially for revolutionary mission concepts such as NASA’s Lynx X-ray Surveyor. It is generally harder to fabricate thin mirrors to the exact shape than thicker ones, and the coatings deposited onto mirror surfaces to increase the reflectivity typically have high intrinsic stress that deforms the mirrors further. Since the rapid development of femtosecond laser technologies over the last few decades has triggered wide applications in materials processing, we have developed a mirror figure correction and stress compensation method using a femtosecond laser micromachining technique for stress-based surface shaping of thin-shell x-ray optics. We employ a femtosecond laser to selectively remove regions of a stressed film that is grown onto the back surface of the mirror, to modify the stress states of the mirror. In this paper, we present experimental results to create both isotropic and anisotropic stress states on thin flat silicon mirrors with thermal oxide ( S i O 2 ) films using femtosecond lasers. We show that equibiaxial stress can be generated through uniformly micromachined holes, while non-equibiaxial stress arises from the ablation of equally spaced troughs. We also present results from strength tests to show how this process minimally affects the strength of mirrors. These developments are beneficial to the high-throughput correction of thin-shell mirrors for future space-based x-ray telescopes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.