Abstract
Hollow core negative curvature fibres (NCFs) are a relatively new class of microstructured optical fibre with potential applications in areas such as the delivery of high power laser light and gas sensing. For sensing, it is necessary for the measurand to interact with the guided mode. To facilitate this, a novel femtosecond laser-based machining protocol has been developed that allows the precision sculpting of access slots into the NCF core along the length of the fibre. The process is a direct-write process using a digitally defined scanning strategy with no need for physical masks or additional processing such as wet etchants and/or focussed ion beam machining. Due to the inherent flexibility of the machining strategy and the high level of control over the depth of material removal, it is likely that this new technique will be transferable to a wide range of microstructured fibres.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.