Abstract

We present the results of 800 and 400 nm wavelength, femtosecond laser pulse irradiation of a sample consisting of a metal film on thermally-grown oxide on silicon. On selected sites, cross-sectional transmission electron microscopy was performed to provide information on sub-surface changes not observable with surface scanning electron microscopy. A range of pulse energies in single-pulse irradiation exists for which the metal film was removed but the oxide was not appreciably thinned. For a sufficiently high pulse energy within this range, substantial defects were observed in the underlying silicon. Five infrared pulses of a relatively high fluence created significant defects, as well as producing polycrystalline material on top of the original oxide and metal. We discuss various factors which may play a role in the formation of the observed features.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.