Abstract

In recent years, femtosecond laser micro/nano fabrication has attracted much interest. With ultrahigh power intensities and ultrashort irradiation periods, femtosecond laser presents unique advantages over conventional laser. Femtosecond laser machining can greatly reduce the heat-affected zone, microcracks and recast layer when it interacts with materials, which changes the physical and chemical mechanisms of laser-material interaction basically. Almost all materials can be manufactured by femtosecond laser via a noncontact and nonthermal process. In addition, femtosecond laser machining can break through the optical diffraction limit as a result of the nonlinear multi-photon effect occurred when it processes materials, which improves the precision significantly. Both sub-micron structures and three dimensional complex structures can be fabricated by femtosecond laser high-precision low-energy-consumption processing. In short, femtosecond laser presents unique advantages in the field of micro/nano manufacturing. The pulse width of femtosecond laser is usually shorter than or equal to the characteristic time of most of the physical/chemical processes, so that a series of interesting phenomena are induced through controlling the local transient electrons dynamics during the processing. Periodic surface micro/nano structures, which have significant effects on the surface properties of the materials, have been observed on almost all materials including metals, dielectrics, semiconductors and so on during femtosecond laser machining. Many researchers have carried out theoretical and experimental studies on femtosecond laser-induced periodic surface structures (LIPSS), such as ripples, quasi-periodic conical structures, regularly arranged nano-column structures and so on, due to their great applied potentialities in national defense, medical treatment, top-end manufacture and other fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call