Abstract

To realize nanoscale manufacturing based on laser direct writing technology, objective lenses with high numerical apertures immersed in water or oil are necessary. The use of liquid medium restricts its application in semiconductors. Achieving nanoscale features on silicon by laser direct writing in a low refractive index medium has been a challenge. In this work, a microsphere assisted femtosecond laser far-field induced dewetting approach is proposed. A reduction in the full-width at half-maximum of the focused light spot is realized by modulating tightly focused light through microspheres and achieving a minimum feature size of 9 nm on silicon in ambient air with energy smaller than the ablation threshold. Theoretical analysis and numerical simulation of laser processing are performed based on a two-temperature model. Furthermore, we explored the potential of femtosecond laser-induced dewetting in nanolithography and demonstrated its ability to achieve an arbitrary structure on silicon. Our work enables laser-based far-field sub-10-nm feature etching on a large-scale, providing a novel avenue for nanoscale silicon manufacturing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call