Abstract

Laser-induced damage of the "standard" (λ/4 stack structure) and "modified" (reduced standing-wave field) HfO(2)/SiO(2) mirrors were investigated by a commercial 800 nm Ti:sapphire laser system. Three kinds of pulse duration of 50 fs, 105 fs, and 135 fs were chosen. The results show that the single-shot damage threshold of the "modified" mirror was about 14%-23% higher compared to that of the "standard" mirror. A model based on the rate equation for free electron generation was adopted to explain the threshold results. It took in account the transient changes in the dielectric function of material during the laser pulse. The simulated threshold agreed with the experimental very well. Besides, for two kinds of mirror, typical breakdown craters for both the single-shots and multi-shots damage tests reveal striking distinct characteristics. Interestingly, the multi-shots damage crater with zigzag-like edge was observed only on the "standard" mirror. These phenomena were illustrated reasonably by the distribution features of the electric field intensity within the mirrors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.