Abstract

The composition of the line and band spectra of the plasma induced by a femtosecond laser pulse on the surface of sea water is determined. The temporal behaviors of the intensity of the continuum and the Ca II, Mg II and Na I lines are investigated. It is shown that the time dependence of the intensity of the Na I line is described by a monoexponential function. The characteristic decay times of the line intensities of Mg II and Na I were used to estimate the three-body recombination times. Using these values, we estimate the electron number density and the feasibility of Local Thermodynamic Equilibrium (LTE) criterion. A method involving excitation rate constants is proposed for the comparison of detection limits. For a plasma generated on a liquid surface, the following relation among detection limits will be obtained: LOD(Na)<LOD(K)<LOD(Ca)<LOD(Al)<LOD(Mg)<LOD(Zn).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call