Abstract

Probing remote matter with laser light is a ubiquitous technique used in circumstances as diverse as laser-induced breakdown spectroscopy and barcode scanners. In classical optics, the intensity that can be brought to bear on a remote target is limited by the spot size of the laser at the distance of the target. This spot size has a lower bound determined by the diffraction limit of classical optics. However, amplified femtosecond laser pulses generate intensity sufficient to modify the refractive index of the ambient air and undergo self-focusing. This self-focusing effect leads to the generation of highly intense laser filaments which maintain their intensity and small sub-millimeter diameter size at distances well beyond the classical Rayleigh length. Such intensity provides the capability of remote scanning, imaging, sensing, and spectroscopy with enhanced spatial resolution. We describe a technique for generating filaments with a femtosecond regenerative chirped-pulse amplifier, and for using the resulting filament to conduct imaging and spectroscopic measurements at remote distances of at least several meters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.