Abstract

A new type of small-period long-period fiber grating (SP-LPFG) consisting of a series of annuli inscribed by a femtosecond laser in a single-mode fiber is proposed and demonstrated. The effects of the annuli radii and the number of annuli in each period on the transmission spectrum are studied. The transmission spectrum of the annular SP-LPFG exhibits both strong Bragg resonances and cladding mode resonances, which have similar temperature sensitivities of 9.26 and 9.75 pm/°C, respectively. The Bragg resonances are insensitive to the change of environment refractive index (RI), while the cladding mode resonances show a RI sensitivity of 141.89 nm/RIU. The proposed sensor offers a potential solution for biomolecular sensing applications by effectively eliminating the issue of temperature cross-sensitivity. Its compact design and ease of spectral acquisition enhance its practicality and convenience.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.