Abstract

We report the formation of arbitrary photoconductive patterns made of tellurium (Te) nanocrystals by exposing a tellurite (TeO2-based) glass to femtosecond laser pulses. During this process, Te/TeO2-glass nanocomposite interfaces with photoconductive properties form on the tellurite glass substrate. We show that these laser-written patterns exhibit a photoresponse, from the near ultraviolet (263 nm) to the visible spectrum, stable over a few months. Specifically, high responsivity (16.55 A/W) and detectivity (5.25 × 1011 Jones) of a single laser-written line pattern are measured for an illumination dose of 0.07 mW/cm2 at 400 nm. This work illustrates a pathway for locally turning a tellurite glass into a functional photoconductor of arbitrary shape, without adding materials and using a single laser process step. Published by the American Physical Society 2024

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.