Abstract

Femtosecond laser-induced damage and ablation (fs-LIDA) is a rich field in extreme non-perturbative nonlinear optics with wide ranging applications, including laser micro- and nano-machining, waveguide writing, and eye surgery. Our understanding of fs-LIDA, however, is limited mostly to visible and near-infrared wavelengths. In this work, we systematically study single-shot, fs-laser ablation (fs-LIA) of single-crystal germanium from near- to mid-infrared wavelengths, and compare the fs-LIA wavelength scaling with two widely used models. We show that these models are inadequate, particularly at mid-infrared wavelengths. Instead, a hybrid model is proposed involving Keldysh ionization rates, a constant free-carrier density threshold, and multi-band effects, which yields good agreement with experimental observations. Aspects of this model may be applied to understanding other strong-field non-perturbative phenomena in solids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.