Abstract

The solar anti-icing/deicing (SADI) strategy represents an environmentally friendly approach for removing ice efficiently. However, the extensive use of photothermal materials could negatively impact financial performance. Therefore, enhancing light utilization efficiency, especially by optimizing the design of a structure with a low content of photothermal materials, has rapidly become a focal point of research. Drawing inspiration from the antireflective micro-nano structure of compound eyes and the thermal insulating hollow structure of polar bear hair, we proposed a new strategy to design a bionic micro-nano hollow film (MNHF). The MNHF was created using a composite manufacturing process that combines femtosecond laser ablation with template transfer techniques. Both theoretical simulations and empirical tests have confirmed that this structure significantly improves photothermal conversion efficiency and thermal radiation capability. Compared to plane film, the photothermal conversion efficiency of MNHF is increased by 45.85%. Under 1.5 sun, the equilibrium temperature of MNHF can reach 73.8 °C. Moreover, even after 10 icing-deicing cycles, MNHF maintains an ultra-low ice adhesion strength of 1.8 ± 0.3 kPa. Additionally, the exceptional mechanical stability, chemical resistance, and self-cleaning capabilities of the MNHF make its practical application feasible. This innovative structure paves the way for designing cost-effective and robust surfaces for efficient photothermal anti-icing/deicing on airplane wings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.