Abstract
Ultrashort laser pulses have enabled highly precise and delicate processing of biological specimens. We present the results of using femtosecond laser pulses for dissection of zona pellucida (ZP) in mouse embryos during assisted hatching procedure. We studied the effects of application of femtosecond laser radiation in the infrared (1028 nm) and visible (514 nm) wavelength ranges. Laser irradiation parameters were optimized so as not to compromise the viability of the treated embryos. We have demonstrated that application of femtosecond laser pulses with the energies in the range of 250–320 nJ (for the wavelength of 1028 nm) and 47–112 nJ (for 514 nm) resulted in efficient ZP dissection. Femtosecond laser-assisted ZP drilling does not slow down the development of pre-implantation embryos and leads to 90–95% frequency of complete hatching. The thermal effects can be significantly lower when femtosecond lasers are used as compared to continuous wave or long-pulse lasers. It is crucial when dealing with living cells or organisms. By optimizing femtosecond laser radiation parameters assisted hatching as well as a wide range of embryo-surgical procedures can be efficiently performed, thus creating a great potential of using femtosecond lasers as a multi-purpose “tool of choice” for specialists in the fields of embryology and developmental biology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.