Abstract

Femtosecond laser-assisted keratoplasty has been proposed as a treatment option for corneal transplantation. In this study, we investigated and compared the outcomes of Ziemer Z8 femtosecond laser (FSL)-assisted penetrating keratoplasty (PK) using a liquid interface versus flat interface. Thirty fresh porcine eyes underwent FSL-assisted PK with the Z8 using different levels of energies (30%, 90% or 150%) and different interfaces (liquid or flat). The real-time intraocular pressure (IOP) changes, incision geometry, corneal endothelial damage, as well as the accuracy of laser cutting and tissue reaction, were performed and compared. We found that the overall average IOP at all laser trephination stages was significantly higher with the flat interface, regardless of the energy used (68.9 ± 15.0 mmHg versus 46.1 ± 16.6 mmHg; P < 0.001). The overall mean laser-cut angle was 86.2º ± 6.5º and 88.2º ± 1.0º, for the liquid and flat platform respectively, indicating minimal deviation from the programmed angle of 90º. When high energy (150%) was used, the endothelial denuded area was significantly greater with the flat interface than with liquid interface (386.1 ± 53.6 mm2 versus 139.0 ± 10.4 mm2P = 0.02). The FSL cutting did not cause obvious tissue reaction alongside the laser cut on histological evaluation. The results indicated a liquid interface is the preferable choice in FSL-assisted corneal transplantation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call