Abstract

Electrospun scaffolds are used extensively in tissue-engineering applications as they offer a cell-friendly microenvironment. However, one major limitation is the dense fibers, small pore size and consequently poor cell infiltration. Here, we employ a femtosecond (FS) laser system to ablate and create microscale features on electrospun poly(l-lactide) (PLLA) nanofibrous scaffolds. Upon determining the ablation parameters, we pattern structured holes with diameters of 50, 100 and 200μm and spacings of 50 and 200μm between adjacent holes on the scaffolds. The elastic moduli of ablated scaffolds decrease with the decrease in spacing and the increase in hole size. Cells seeded on the laser-ablated scaffolds exhibit different morphology but similar proliferation rate when compared with control (non-ablated) scaffold. Furthermore, animal studies indicate that ablated scaffolds facilitate endothelial cell ingrowth as well as drastically increase M2 macrophage and overall cell infiltration. These findings demonstrate that FS laser ablation can be used to increase cell infiltration into nanofibrous scaffolds. Laser ablation not only can create desired features in micrometer length scale but also presents a new approach in the fabrication of three-dimensional porous constructs for tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.