Abstract

Femtosecond heterodyne transient grating spectroscopy was employed to investigate the nonradiative decay pathway from the S2 (1(1)Bu(+)) state to the S1 (2(1)Ag(-)) state of peridinin in methanol solution. Just as previously observed by this laboratory for β-carotene in benzonitrile, the real (absorption) and imaginary (dispersion) components of the transient grating signal obtained with Fourier transform spectral interferometry from peridinin exhibit ultrafast responses indicating that S2 state decays in 12 fs to produce an intermediate state, Sx. The excited state absorption spectrum from the Sx state of peridinin, however, is found to be markedly blue-shifted from that of β-carotene because it makes a substantial contribution to the signal observed with 40 fs, 520 nm pulses. The results of a global target analysis and numerical simulations using nonlinear response functions and the multimode Brownian oscillator model support the assignment of Sx to a displaced conformation of the S2 state rather than to a vibrationally excited (or hot) S1 state. The Sx state in peridinin is assigned to a structure with a distorted conjugated polyene backbone moving past an activation-energy barrier between planar and twisted structures on the S2 potential surface. The lengthened lifetime of the Sx state of peridinin in methanol, 900 ± 100 fs, much longer than that typically observed for carotenoids lacking carbonyl substituents, ∼150 fs, can be attributed to the slowing of torsional motions by solvent friction. In peridinin, the system-bath coupling is significantly enhanced over that in β-carotene solution most likely due to the intrinsic intramolecular charge transfer character it derives from the electron withdrawing nature of the carbonyl substituent. An important additional implication is that the Sx state, and the distorted structures reached subsequently along the torsional gradient on the S2 potential surface, may serve as the principal excitation energy transfer donors to chlorophyll a in the peridinin-chlorophyll a protein from dinoflagellates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.