Abstract
The filamentation of focused beams at wavelengths of 800 and 248 nm in the air is studied numerically. The results indicate that relatively tight focusing can lead to the coalescence of individual regions of high fluence and high plasma density that result from multiple refocusing, whereas in the case of weak focusing such regions are separated in the pulse propagation direction. The lower multiphoton ionization order in the case of UV radiation leads to a stronger effect of geometric focusing on filament formation. We show the possibility to control the parameters of femtosecond laser plasma filaments by introducing astigmatism in laser beam wavefront. Strong astigmatism can lead to the splitting of the channel into two separate regions. We demonstrate that the self-phase modulation in the thin pass-through dielectric plate decreases the distance to the filament start in air and increases the length of plasma channel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.