Abstract

AbstractWe present femtosecond time-resolved studies of the photoexcited carrier response in the far-infrared spectral range in PECVD a-Si:H and a-SiGe:H thin films. The experiments are carried out using an optical pump / terahertz (THz) probe technique, in which a femtosecond pump pulse excites carriers in the sample and a time-delayed probe pulse measures the resulting change in the far-infrared optical properties as a function of time delay following the excitation. These measurements are sensitive to carrier processes at low energy, corresponding to a range of approximately 1 - 10 meV, a key energy scale in these materials. We find that the observed photoexcited carrier dynamics are consistent with trapping of carriers into band tail states on a picosecond time scale.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.