Abstract

The cyclization reaction of the photochromic diarylethene derivative 1,2-bis(2,4-dimethyl-5-phenyl-3-thienyl)perfluorocyclopentene was studied in its single crystal phase with femtosecond transient absorption spectroscopy. The transient absorption measurements were performed with a robust acquisition scheme that explicitly exploits the photoreversibility of the molecular system and monitors the reversibility conditions. The crystalline system demonstrated 3 × 10(4) repeatable cycles before significant degradation was observed. Immediately following photoexcitation, the excited state absorption associated with the open-ring conformation undergoes a large spectral shift with a time constant of approximately 200 fs. Following this evolution on the excited state potential energy surface, the ring closure occurs with a time constant of 5.3 ps, which is significantly slower than previously reported measurements for similar derivatives in the solution phase. Time resolved electron diffraction studies were used to further demonstrate the assignment of the transient absorption dynamics to the ring closing reaction. The mechanistic details of the ring closing are discussed in the context of prior computational work along with a vibrational mode analysis using density functional theory to give some insight into the primary motions involved in the ring closing reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.