Abstract

Carbon chains with an odd number of C atoms are reactive intermediates with a high biradical character. Here we report a joint experimental and computational investigation of the dynamics of diphenylpropynylidene, C6H5-C3-C6H5, in dichloromethane and ethanol. The biradical is generated by ultraviolet light from 1,3-diphenyldiazopropyne. Electron paramagnetic resonance spectra are recorded to elucidate the spin multiplicity and geometry of the biradical. In both solvents a triplet ground state at 4 K is verified. Transient absorption spectra provide insight into the fate of the biradical. A study in deaerated dichloromethane permits us to follow the photophysics of diphenylpropynylidene and to extract time constants for its vibrational as well as electronic relaxation. In the presence of oxygen, a more complex photochemistry is observed that permits us to derive a model for the reaction of the biradical with O2. In ethanol, the spectra recorded in the presence and absence of O2 are very similar, which can be explained by the similarity of the chromophores of the reaction products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call