Abstract

We report the femtosecond nuclear dynamics of Cu(CD3OD) van der Waals clusters, investigated using photodetachment-photoionization spectroscopy. Photodetachment of an electron from Cu-(CD3OD) with a 150 fs, 398 nm laser pulse produces a vibrationally excited neutral complex that undergoes ligand reorientation and dissociation. The dynamics of Cu(CD3OD) on the neutral surface is interrogated by delayed femtosecond resonant two-photon ionization. Analysis of the resulting time-dependent signals indicates that the nascent Cu(CD3OD) complex dissociates on two distinct time scales of 3 and 30 ps. To understand the origins of the observed time scales, complimentary studies were performed. These included measurement of the photoelectron spectrum of Cu-(CD3OD) as well as a series of calculations of the structure and the electronic and vibrational energies of the anion and neutral complexes. Based on the comparisons of the experimental and calculated results for Cu(CD3OD) with those obtained from earlier studies of Cu(H2O), we conclude that the 3 ps time scale reflects the energy transfer from the rotation of CD3OD in the complex to the dissociation coordinate, while the 30 ps time scale reflects the energy transfer from the excited methyl torsion states to the dissociation coordinate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call