Abstract

Here, we report on the possible achievement, in ultrafast electron diffraction and imaging, of temporal resolution of tens of femtoseconds through the use of chirped electron packets in combination with energy filtering. Space–charge forces in multi-electron packets accelerate leading electrons and retard trailing ones, thus inducing correlations of momentum and time. By resolving the diffraction images with an energy analyzer, well-defined temporal slices of the long electron packet can be selected. Numerical simulations show that conventional electron sources are sufficient to reach the 30-fs domain of resolution without electron packet compression. They also reveal the influence of packet shape, electron density and photoemission bandwidth on the achievable time resolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.