Abstract

Improving the laser-induced damage threshold of optical components is a basic endeavor in femtosecond technology. By testing more than 30 different femtosecond mirrors with 42 fs laser pulses at 1 kHz repetition rate, we found that a combination of high-bandgap dielectric materials and improved design and coating techniques enable femtosecond multilayer damage thresholds exceeding 2 J/cm2 in some cases. A significant ×2.5 improvement in damage resistance can also be achieved for hybrid Ag-multilayer mirrors exhibiting more than 1 J/cm2 threshold with a clear anticorrelation between damage resistance and peak field strength in the stack. Slight dependence on femtosecond pulse length and substantial decrease for high (megahertz) repetition rates are also observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.