Abstract

We have studied carrier dynamics in In2O3nanocrystals grown on a quartz substrate using chemical vapor deposition. Transient differential absorption measurements have been employed to investigate the relaxation dynamics of photo-generated carriers in In2O3nanocrystals. Intensity measurements reveal that Auger recombination plays a crucial role in the carrier dynamics for the carrier densities investigated in this study. A simple differential equation model has been utilized to simulate the photo-generated carrier dynamics in the nanocrystals and to fit the fluence-dependent differential absorption measurements. The average value of the Auger coefficient obtained from fitting to the measurements was γ = 5.9 ± 0.4 × 10−31 cm6 s−1. Similarly the average relaxation rate of the carriers was determined to be approximately τ = 110 ± 10 ps. Time-resolved measurements also revealed ~25 ps delay for the carriers to reach deep traps states which have a subsequent relaxation time of approximately 300 ps.

Highlights

  • Indium oxide In2O3 is considered an important n-type wide-band gap semiconductor which has received a great deal of attention over the past few years due to its technological application in optoelectronic devices [1, 2] and sensors [3]

  • In2O3 NWs configured as gas sensors have demonstrated greater room temperature sensitivity and selectivity than their commercial tin oxide thin-film counterparts

  • We find that Auger recombination appears to play a crucial role in the recovery of the photo-generated carriers in the In2O3 NCs within the first tens of ps and the Auger coefficient is 5.9 ± 0.4 9 10-31 cm6 s-1

Read more

Summary

Introduction

Indium oxide In2O3 is considered an important n-type wide-band gap semiconductor which has received a great deal of attention over the past few years due to its technological application in optoelectronic devices [1, 2] and sensors [3]. Keywords In2O3 nanocrystals Á Carrier dynamics Á Femtosecond differential absorption spectroscopy Á Auger coefficient

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.