Abstract

Using a many-body theory, we discuss some fundamental issues of femtomagnetism in magnetic electronic systems. We address the question of how spin may couple to transient optical coherence during time scales shorter than the photoexcitation duration and the characteristic times of interaction with the lattice. We also discuss the role of the competition between magnetic exchange and spin–orbit interactions in the nonthermal temporal evolution regime. Using density matrix equations of motion, we predict a femtosecond collective spin tilt leading to nonthermal magnetization modulation and all-optical ultrafast switching between different metastable magnetic states of (Ga,Mn)As ferromagnets. This spin dynamics is triggered by carrier coherences and by nonthermal populations photoexcited along the {111} equivalent directions of the Brillouin zone, which can be controlled by tuning the laser frequency/intensity and by using a small magnetic field. We present femtosecond magneto-optical spectroscopy experimental results that agree with our predictions. Our results indicate the possibility of reading the (Ga,Mn)As magnetic memory at THz speeds limited only by the pulse duration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.