Abstract
An optomechanical device that contains a nanomechanical resonator with an ultralow effective mass of 6.42 fg is designed and demonstrated. The femtogram scale nanomechanical resonator is embedded in a double-slot photonic crystal nanobeam cavity. Optical resonance provides efficient readout of the nanomechanical resonator movements. The fabricated device is optically and mechanically characterized in atmosphere. In the measured radio-frequency power spectral density, a peak at 3.928 GHz is identified to be the mechanical mode with an effective mass of 6.42 fg. The measured room-temperature mechanical Q-factor is 1255, and a displacement sensitivity of 0.13 fm/Hz, which is 22 times beyond the standard quantum limit, is obtained. These demonstrated on-chip integrated optomechanical devices combining high Q-factor optical cavities and nanomechanical resonators with ultralow effective masses are promising in ultrasensitive measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.