Abstract

To determine the ability of tibial plateau leveling osteotomy (TPLO) to address abnormal femorotibial kinematics caused by cranial cruciate ligament (CCL) rupture during walking in dogs. Prospective, clinical. Sixteen dogs (20-40 kg) with unilateral complete CCL rupture. Lateral view fluoroscopy was performed during treadmill walking preoperatively and 6 months after TPLO. Digital three-dimensional (3D) models of the femora and tibiae were created from computed tomographic (CT) images. Gait cycles were analyzed by using a 3D-to-2D image registration process. Craniocaudal translation, internal/external rotation, and flexion/extension of the femorotibial joint were compared between preoperative and 6-month postoperative time points for the affected stifle and 6-month postoperative unaffected contralateral (control) stifles. In the overall population, CCL rupture resulted in 10 ± 2.2 mm (mean ± SD) cranial tibial translation at midstance phase, which was converted to 2.1 ± 4.3 mm caudal tibial translation after TPLO. However, five of 16 TPLO-treated stifles had 4.1 ± 0.3 mm of cranial tibial subluxation during mid-to-late stance phase, whereas 10 of 16 TPLO-treated stifles had 4.3 ± 0.4 mm of caudal tibial subluxation throughout the gait cycle. Overall, postoperative axial rotational and flexion/extension patterns were not different from control, but stifles with caudal tibial subluxation had more external tibial rotation during mid-to-late stance phase compared with stifles with cranial tibial subluxation. TPLO mitigated abnormal femorotibial kinematics but did not restore kinematics to control values in 15 of 16 dogs during walking. Tibial plateau leveling osteotomy reduces cranial tibial subluxation during walking, but persistent instability is common.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call