Abstract

PurposeAlthough metaphyseal sleeves are usually used with stems, little is known about the exact contribution/need of the stem for the initial sleeve-bone interface stability, particularly in the femur, if the intramedullary canal is deformed or bowed. The aim of the present study is (1) to determine the contribution of the diaphyseal-stem on sleeve-femur interface stability and (2) to determine experimentally the strain shielding effect on the metaphyseal femur with and without diaphyseal-stem. It is hypothesised that diaphyseal-stem addition increases the sleeve-femur interface stability and the strain-shielding effect on the metaphyseal femur relatively to the stemless condition.Material and methodsThe study was developed through a combined experimental and finite-element analysis approach. Five synthetic femurs were used to measure cortex strain (triaxial-rosette-gages) behaviour and implant cortex micromotions (Digital Image Correlation) for three techniques: only femoral-component, stemless-sleeve and stemmed-sleeve. Paired t-tests were performed to evaluate the statistical significance of the difference of cortex strains and micromotions. Finite-element models were developed to assess the cancellous bone strain behaviour and sleeve-bone interface micromotions; these models were validated against the measurements.ResultsCortex strains are significantly reduced (p < 0.05) on the stemmed-sleeve with a 150 μstrain mean reduction at the medial and lateral distal sides which compares with a 60 μstrain mean reduction (p > 0.05) on the stemless condition. Both techniques presented a mean cancellous bone strain reduction of 700 μstrain (50%) at the distal region and a mean increase of 2500 μstrain (4x) at the sleeve proximal region relative to the model only with the femoral component. Both techniques presented sleeve-bone micromotions amplitude below 50-150 μm, suitable for bone ingrowth.ConclusionsThe use of a supplemental diaphyseal-stem potentiates the risk of cortex bone resorption as compared to the stemless-sleeve condition; however, the stem is not essential for the enhancement of the initial sleeve-bone stability and has minor effect on the cancellous bone strain behaviour. Based on a purely structural point view, it appears that the use of a diaphyseal-femoral-stem with the metaphyseal sleeve is not mandatory in the revision TKA, which is particularly relevant in cases where the use of stems is impracticable.

Highlights

  • In revision TKA (Total Knee Arthroplasty), the integrity of the remaining bone stock, once the primary components have been removed, often presents a challenge to obtain durable long-term fixation of the revision components

  • The use of a supplemental diaphyseal-stem potentiates the risk of cortex bone resorption as compared to the stemless-sleeve condition; the stem is not essential for the enhancement of the initial sleeve-bone stability and has minor effect on the cancellous bone strain behaviour

  • Based on a purely structural point view, it appears that the use of a diaphyseal-femoral-stem with the metaphyseal sleeve is not mandatory in the revision TKA, which is relevant in cases where the use of stems is impracticable

Read more

Summary

Introduction

In revision TKA (Total Knee Arthroplasty), the integrity of the remaining bone stock, once the primary components have been removed, often presents a challenge to obtain durable long-term fixation of the revision components. In these scenarios, the metaphyseal region of the bone has been recognized by its importance to the overall stability of a revision construct [15, 25]. The reconstructive techniques, including bone allograft, morselized allograft, prosthetic composites, and custom prostheses have been used, with conflicting clinical results [18, 21, 27] With these techniques, the metaphyseal region has been underutilized, as stability is typically achieved in the epiphysis and diaphysis. It is hypothesised that diaphyseal-stem addition increases the sleeve-femur interface stability and the strain-shielding effect on the metaphyseal femur relatively to the stemless condition

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call