Abstract

BackgroundHighly cross-linked polyethylene (HXLPE) liners in total hip arthroplasty (THA) have demonstrated decreased wear rates, resilience to cup orientation, and reduced osteolysis compared to conventional polyethylene. Sequential irradiation and annealing below the melting temperature is unique compared to most HXLPE which is irradiated and remelted. This study purpose is to provide minimum 5-year femoral head penetration rates of sequentially annealed HXLPE in primary THA. MethodsA retrospective review of a prospectively collected database identified 198 consecutive, cementless primary THAs utilizing sequentially annealed HXLPE (X3; Stryker, Mahwah, NJ). Operative technique was standardized. Radiographs were analyzed utilizing the Martell method with minimum 5-year and 1-year radiographs as baseline to minimize the initial bedding-in period. ResultsSeventy-seven hips with minimum 5-year follow-up were analyzed. Mean steady state linear and volumetric head penetration rates were 0.095 mm/y and 76 mm3/y, respectively. Volumetric head penetration was significantly less for 32-mm compared to 36-mm (P = .028). In addition, less head penetration was observed for ceramic 32-mm heads at nearly half the rate compared to cobalt-chromium 36-mm heads (P ≥ .092). No correlations existed between penetration rates and age, body mass index, University of California Los Angeles Activity Level, polyethylene thickness, cup inclination, or anteversion (P ≥ .10). No radiographic osteolysis was observed. ConclusionSurprisingly, linear head penetration rates of sequentially annealed HXLPE were nearly identical to the osteolysis threshold for conventional polyethylene and greater than reports of irradiated and remelted HXLPE. Furthermore, these data corroborate reports that HXLPE is resilient to cup orientation and demographic variables. Longer term follow-up is recommended.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call