Abstract

This study aimed to create a conversion equation that accurately predicts cartilage magnetic resonance imaging (MRI) T2 relaxation times using ultrasound echo-intensity and common participant demographics. We recruited 15 participants with a primary anterior cruciate ligament reconstruction between the ages of 18 and 35 years at 1-5 years after surgery. A single investigator completed a transverse suprapatellar scan with the ACLR limb in max knee flexion to image the femoral trochlea cartilage. A single reader manually segmented the femoral cartilage cross-sectional area to assess the echo-intensity (i.e., mean gray-scale pixel value). At a separate visit, a T2 mapping sequence with the MRI beam set to an oblique angle was used to image the femoral trochlea cartilage. A single reader manually segmented the cartilage cross-sectional area on a single MRI slice to assess the T2 relaxation time. A stepwise, multiple linear regression was used to predict T2 relaxation time from cartilage echo-intensity and common demographic variables. We created a conversion equation using the regression betas and then used an ICC and Bland-Altman plot to assess agreement between the estimated and true T2 relaxation time. Cartilage ultrasound echo-intensity and age significantly predicted T2 relaxation time (F = 7.33, p = 0.008, R2 = 0.55). When using the new conversion equation to estimate T2 relaxation time from cartilage echo-intensity and age, there was strong agreement between the estimated and true T2 relaxation time (ICC2,k = 0.84). This study provides promising preliminary data that cartilage echo-intensity combined with age can be used as a clinically accessible tool for evaluating cartilage composition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.