Abstract

BackgroundThe relationship between torsional bony deformities and rotational gait parameters has not been sufficiently investigated. This study was to investigate the degree of contribution of torsional bony deformities to rotational gait parameters in patients with diplegic cerebral palsy (CP).MethodsThirty three legs from 33 consecutive ambulatory patients (average age 9.5 years, SD 6.9 years; 20 males and 13 females) with diplegic CP who underwent preoperative three dimensional gait analysis, foot radiographs, and computed tomography (CT) were included. Adjusted foot progression angle (FPA) was retrieved from gait analysis by correcting pelvic rotation from conventional FPA, which represented the rotational gait deviation of the lower extremity from the tip of the femoral head to the foot. Correlations between rotational gait parameters (FPA, adjusted FPA, average pelvic rotation, average hip rotation, and average knee rotation) and radiologic measurements (acetabular version, femoral anteversion, knee torsion, tibial torsion, and anteroposteriortalo-first metatarsal angle) were analyzed. Multiple regression analysis was performed to identify significant contributing radiographic measurements to adjusted FPA.ResultsAdjusted FPA was significantly correlated with FPA (r=0.837, p<0.001), contralateral FPA (r=0.492, p=0.004), pelvic rotation during gait (r=−0.489, p=0.004), knee rotation during gait (r=0.376, p=0.031), and femoral anteversion (r=0.350, p=0.046). In multiple regression analysis, femoral anteversion (p=0.026) and tibial torsion (p=0.034) were found to be the significant contributing structural deformities to the adjusted FPA (R2=0.247).ConclusionsFemoral anteversion and tibial torsion were found to be the significant structural deformities that could affect adjusted FPA in patients with diplegic CP. Femoral anteversion and tibial torsion could explain only 24.7% of adjusted FPA.

Highlights

  • The relationship between torsional bony deformities and rotational gait parameters has not been sufficiently investigated

  • Anteroposterior talo-first metatarsal angle measured on weight bearing foot radiographs showed the highest reliability with an intraclass correlation coefficients (ICCs) value of 0.967, followed by tibial torsion measured on axial computed tomography (CT) images (ICC 0.887), and knee torsion (ICC 0.684)

  • Increased femoral anteversion was found to be significantly correlated with internal hip rotation during gait (r=0.385, p=0.027), whereas the correlation between internal tibial torsion and external knee rotation during gait was not significant (r=−0.214, p=0.232)

Read more

Summary

Introduction

The relationship between torsional bony deformities and rotational gait parameters has not been sufficiently investigated. This study was to investigate the degree of contribution of torsional bony deformities to rotational gait parameters in patients with diplegic cerebral palsy (CP). The physical examinations conducted to evaluate torsional bony deformities of the lower extremities include hip rotation angle for the assessment of femoral anteversion, thigh foot angle for tibial torsion, and foot shape. Several authors have investigated the relationship between torsional bony deformities and rotational gait deviations, the majority have focused on deformities of femur and tibia [1,5,6,7,8]. Various types of bony deformities, such as, pelvic rotation, acetabular torsion, knee joint torsion between femur and tibia, ankle joint torsion between the bimalleolar axis and talus, and foot deformity including forefoot adduction and abduction, could affect overall rotational alignment. Spinal deformities, trunk balance, and balance between external and internal rotator muscles could affect rotational gait deviations

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.