Abstract

FeMoO4 is a potential anode material for Li-ion batteries due to its high theoretical specific capacity. The factors that restrict the application of FeMoO4 are the low specific surface area of the material and poor cycle stability caused by the huge volume change during the cycling process of lithium ion insertion and extraction. In this work, N-doped porous carbon was synthesized and composited with FeMoO4 by a hydrothermal method. The large specific surface area provided by the porous structure can enable sufficient contact of ions/electrons with active sites, thereby enhancing the lithium storage performance and buffering the volume change during lithiation/delithiation, leading to a high cycling stability of the material. After 200 cycles at a current density of 300 mA g−1, the discharge specific capacity of the composite can reach up to 1291.4 mA h g−1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call