Abstract

The chemical co-precipitation method was used to prepare magnetically separable Fe–Mn oxide composites, and the degradation of p-chloroaniline (PCA) using MnFe2O4 activated peroxydisulfate (PDS). The MnFe2O4 catalyst exhibited highly catalytic activity in the experiments. XRD, FTIR, SEM and TEM were used to characterize the catalytic materials. MnFe2O4 calcined at 500 °C was more suitable as a catalytic material for PCA degradation. The elevated reaction temperature was beneficial to the degradation of PCA in neutral pH solution. The reaction mechanism of the MnFe2O4 catalyzed oxidative degradation of PCA by PDS was investigated by free radical quenching experiments and XPS analysis. The results showed that sulfate radicals (SO4•−), hydroxyl radicals (•OH) and singlet oxygen (1O2) may all be participated in the degradation of PCA. XPS spectra showed that the electron gain and loss of Mn2+ and Fe3+ was the main cause of free radical generation. The possible intermediates in the degradation of PCA were determined by HPLC-MS, and possible degradation pathways for the degradation of PCA by the MnFe2O4/PDS system were proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call