Abstract

Nanoplastics (NPs) have been commonly detected in aquatic ecosystems, and their negative effects on aquatic organisms have raised concerns in the scientific community and general public. The acute toxicity, neurotoxicity, and metabolic toxicity induced by NPs on fishes have been reported by many studies, although less attention has been focused on how mother exposed to NPs affected their offspring in aquatic organisms. Here, female zebrafish (F0) were exposed to 0, 200 and 2000 μg/L polystyrene nanoplastics (PS-NPs) for 42 d, with their offspring (F1) reared in clear water until sexual maturity. The results showed that PS-NPs were detected in various organs of F0 and F1. PS-NPs exposure significantly decreased gonadal 17-estradiol (E2), while increasing testosterone (T) contents. Lower levels of cyp19a1a, lhr and erα expressions in the 2000 μg/L group were consistent with a reduced number of mature oocytes (MO), but an increase in perinucleolar oocytes (PO). Interestingly, the expression of vtg was only up-regulated by 200 μg/L PS-NPs. After exposure, the egg production was dramatically reduced, but the hatching rate and heartbeat of F1 embryos from treated females were significantly higher than those observed in females from the control group. Maternal PS-NPs exposure significantly decreased the E2 and T levels in F1 adults, while PS-NPs exposure significantly up-regulated the sox9a but down-regulated the foxl2a in F1 larvae of 30 days post fertilization (dpf). This study showed that PS-NPs caused reproductive toxicity by changing the hypothalamic-pituitary-gonadal (HPG) axis-related genes, impairing the reproductive capacity of female zebrafish, affecting the development and disrupting the endocrine function of F1. These results suggested that PS-NPs had adverse effects on fish reproductive system both in the directly exposed generation and in their unexposed offspring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.