Abstract

Microcystins (MCs) released during cyanobacterial blooms exert varied toxicity on fish. Up to now, the reproductive toxicity of MCs on fish has rarely been reported. The present study investigated the reproductive toxicity of microcystin-LR (MC-LR) on male and female zebrafish (Danio rerio) by subchronic immersion in 1, 5, 20μg/L for 30d. After MC-LR exposure, the hatchability and the 17 beta-estradiol (E2) concentration in gonads significantly decreased in the 20μg/L group. In the 5 and 20μg/L groups, the whole body vitellogenin (VTG) levels significantly increased in females, while considerably decreased in males. The VTG1 transcriptional level significantly reduced in the liver of both female and male treated fish. Marked histological lesions were observed in the livers, ovaries and testes in MC-LR treated fish. Apoptotic rate in the ovaries significantly increased. Significant down-regulation of Bcl-2 transcriptional level was found in the gonads of all MC-LR treated fish, while marked up-regulation of Bax transcription level was determined in the 20μg/L female treatment group, but a significant down-regulation in males. Although the transcriptional level of caspase-3 dropped in ovaries of the 5 and 20μg/L treatment groups, the significant increase of caspase-3 activation levels in the ovaries and testes were detected. The present findings indicate that MC-LR exposure exerts diverse reproductive toxicity in zebrafish with females exhibiting more sensitivity than males. The present study also confirmed for the first time that MC-LR does not cause any estrogenic effects in adult zebrafish.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.