Abstract

BackgroundPrompted by fewer females compared to males enrolling in physics and advanced mathematics at both secondary and university levels, our research investigated the views and experiences of female students currently studying upper secondary school physics. We interviewed 18 female students about influences they considered important to their own science education, interest in science, and future science-related aspirations. Our purpose was to identify the experiences that these students most strongly associated with the generation and maintenance of their engagement in science, particularly represented in this research by their enrolment in upper secondary physics.ResultsThe research team used a systematic, iterative process to identify the main themes in the transcribed interview data. We identified the influence each girl reported as the strongest (ranked first). We also combined all influences that the participants had nominated, regardless of their ranking, to further examine all factors participants suggested as influential in their sustained engagement in school science (represented by their decision to study upper secondary physics). Systematic analysis of the interview data confirms that the influences on these females’ choices to study physics at upper secondary originate from a combination of their teachers, their school’s science culture, members of their family, the participants themselves and their peers.ConclusionsThe interviews highlighted the idiographic complexities in understanding the wide range of important influences on these students studying physics at upper secondary school and their engagement in science. The unique contribution of this work is giving voice to the participants and reflecting on what these high-achieving females have to say about the influential factors in their decisions to pursue science. Supportive teachers and the school science culture play essential roles, and other cultural and/or social factors such as family members and peers are identified as important. References to the culture and expectations of the school, family holidays, and conversations with siblings are support factors that seem to interact and overlap. At the same time, the importance of policy-amenable factors such as competent and caring science teachers, and science-supportive school cultures should be emphasised and encouraged.

Highlights

  • Prompted by fewer females compared to males enrolling in physics and advanced mathematics at both secondary and university levels, our research investigated the views and experiences of female students currently studying upper secondary school physics

  • We posed the following research question: What do female students describe as important influences or experiences in generating and sustaining their interest and engagement in science, represented by studying upper secondary physics?

  • In this study we asked, What do female students describe as important influences or experiences in generating and sustaining their interest and engagement in science, represented by studying upper secondary physics?

Read more

Summary

Introduction

Prompted by fewer females compared to males enrolling in physics and advanced mathematics at both secondary and university levels, our research investigated the views and experiences of female students currently studying upper secondary school physics. Across Australia it appears widely accepted that increasing the numbers of students pursuing STEM education has the potential to promote the development of knowledge-based, specialist skills important for national growth and wellbeing (MCEECDYA 2008). Despite this apparent consensus, recent decades have seen decreasing enrolment in post-compulsory secondary school science and mathematics courses (AIG, 2015; Kennedy et al 2014; Lyons & Quinn 2010; Office of the Chief Scientist 2012; Mack & Wilson 2015; Wilson & Mack 2014). Despite almost universal agreement that decreasing enrolments have potentially negative consequences, there are occasional claims regarding the oversupply of qualified STEM graduates with some experiencing difficulty finding full-time work (Norton 2013)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.