Abstract
Chemical communication plays a vital role in mate attraction and discrimination among many insect species. Here, we document a unique example of semiochemical parsimony, where four chemicals act as both aphrodisiacs and anti-aphrodisiacs in different contexts in Bactrocera dorsalis. Specifically, we identified four female-specific semiochemicals, ethyl laurate, ethyl myristate, ethyl cis-9-hexadecenoate, and ethyl palmitate, which serve as aphrodisiacs to attract male flies and arouse male courtship. Interestingly, these semiochemicals, when sexually transferred to males during mating, can function as anti-aphrodisiacs, inhibiting the receptivity of subsequent female mates. We further showed that the expression of elongase11, a key enzyme involved in the biosynthesis of these semiochemicals, is under the control of doublesex, facilitating the exclusive biosynthesis of these four semiochemicals in females and guaranteeing effective chemical communication. The dual roles of these semiochemicals not only ensure the attractiveness of mature females but also provide a simple yet reliable mechanism for female mate discrimination. These findings provide insights into chemical communication in B. dorsalis and add elements for the design of pest control programs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.