Abstract

Traditional explanations for the evolution of menopause and post-reproductive lifespan in human females have been based on the benefits of maternal or grand-maternal care outweighing the cost of lost reproduction. These explanations assume an evolutionary origin of menopause since human divergence with the most recent common ancestor. In this study, I conduct a literature survey of studies of 42 mammal species from eight orders, showing that post-reproductive lifespan appears to be widespread among mammals. I then propose an alternative to traditional hypotheses: following accepted theories of trade-offs and senescence, I suggest that the cost of extending reproductive lifespan might be relatively high in female mammals. Somatic and reproductive senescence appear to follow separate trajectories, so it is not surprising that the two processes should occur on different schedules. The timing of each process is probably determined by maximization of reproductive performance and survival early in adulthood, with consequent trajectories resulting in a post-reproductive lifespan. The early end of reproduction relative to lifespan may be due to the cost of production and/or maintenance of oocytes, which decline exponentially over time. Oocyte number below a threshold may trigger an end to normal hormonal cycling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call